Accuracy Enhancement for Higher Derivatives using Chebyshev Collocation and a Mapping Technique

نویسنده

  • Wai Sun
چکیده

We study a new method in reducing the roundo error in computing derivatives using Chebyshev collocation methods. By using a grid mapping derived by Koslo and Tal-Ezer, and the proper choice of the parameter , the roundo error of the k-th derivative can be reduced from O(N2k) to O((N jln j)k), where is the machine precision and N is the number of collocation points. This drastic reduction of roundo error makes mapped Chebyshev methods competitive with any other algorithm in computing second or higher derivatives with large N . We also study several other aspects of the mapped Chebyshev di erentiation matrix. We nd that 1) the mapped Chebyshev methods requires much less than points to resolve a wave, 2) the eigenvalues are less sensitive to perturbation by roundo error, and 3) larger time steps can be used for solving PDEs. All these advantages of the mapped Chebyshev methods can be achieved while maintaining spectral accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accuracy Enhancement for Higher Derivatives using Chebyshev Collocation and a Mapping Technique

We study a new method in reducing the roundo error in computing derivatives using Chebyshev collocation methods. By using a grid mapping derived by Koslo and Tal-Ezer, and the proper choice of the parameter , the roundo error of the k-th derivative can be reduced from O(N) to O((N jln j)k), where is the machine precision and N is the number of collocation points. This drastic reduction of round...

متن کامل

Chebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation

In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...

متن کامل

A modified Chebyshev pseudospectral DD algorithm for the GBH equation

In this paper, a Chebyshev spectral collocation domain decomposition (DD) semidiscretization by using a grid mapping, derived by Kosloff and Tal-Ezer in space is applied to the numerical solution of the generalized Burger’s–Huxley (GBH) equation. To reduce roundoff error in computing derivatives we use the above mentioned grid mapping. In this work, we compose the Chebyshev spectral collocation...

متن کامل

Rational Chebyshev Collocation approach in the solution of the axisymmetric stagnation flow on a circular cylinder

In this paper, a spectral collocation approach based on the rational Chebyshev functions for solving the axisymmetric stagnation point flow on an infinite stationary circular cylinder is suggested. The Navier-Stokes equations which govern the flow, are changed to a boundary value problem with a semi-infinite domain and a third-order nonlinear ordinary differential equation by applying proper si...

متن کامل

Chebyshev-Sinc Collocation Schemes for Solving a Class of Convection Diffusion Equations

Tthis paper, is concerned with obtaining numerical solutions for a class of convection-diffusion equations (CDEs) with variable coefficients. Our approaches are based on collocation methods. These approaches implementing all four kinds of shifted Chebyshev polynomials in combination with Sinc functions to introduce an approximate solution for CDEs . This approximate solution can be expressed as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994